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WAVE RESISTANCE OF AMPHIBIAN AIRCUSHION VEHICLES

DURING MOTION ON ICE FIELDS

UDC 624.124:532.595V. M. Kozin and A. V. Pogorelova

The steady motion of amphibian aircushion vehicles over water covered with continuous ice is studied.
The ice sheet is simulated by a viscoelastic ice plate. An analysis is made of the effect of the aspect
ratio of the vehicle, the depth of the water reservoir, and ice characteristics on the wave resistance
of the vehicle and the speed of the vehicle at which the wave resistance is maximal.
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1. The hydrodynamic problem of an amphibian aircushion vehicle (ACV) moving over an ice field is simulated
by a system of surface pressures [1] moving on a floating viscoelastic ice plate [2].

Let us consider an infinite region covered with continuous ice, over which a specified system of surface
pressures q is moving with velocity u. The coordinate system aligned with the vehicle is located as follows: the
xOy plane coincides with the unperturbed ice–water interface, the x axis is directed along the motion of the vehicle,
and the z axis is directed vertically upward. It is assumed that water is an ideal incompressible fluid of density ρ2

and the fluid motion is potential. The ice field is simulated by an initially unstressed, viscoelastic, homogeneous,
isotropic plate. The period of wave processes in the ice plate is assumed to be shorter than the ice relaxation time.
According to [2], the Kelvin–Voigt law of deformation of a delayed-elastic linear medium [3] is used for ice.

From the above assumptions, the linearized boundary conditions for the fluid velocity potential func-
tion Φ(x, y, z) satisfying the Laplace equation ∆Φ = 0 are written as
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where G = 0.5E/(1 + ν) is the shear elastic modulus of ice, E is the elastic modulus of ice under tension and
compression, ν is Poisson’s coefficient, h(x, y) is the ice thickness, ρ1(x, y) is the ice density, τϕ is the strain relaxation
time for ice or the “delay” [2, 3], w(x, y) is the displacement of the fluid surface or the vertical displacement of ice,
and H = H1 − b, where H1 is the depth of the basin and b = ρ1h/ρ2 is the depth of submergence of ice in static
equilibrium. For great depths, where H1 far exceeds h, one can assume that H ≈ H1. Below, we assume that ρ1

and h are constants. The reduced values of the shear modulus G and the ice density ρ1 found by integration over
the plate thickness [2] should be taken as the calculated values.

According to [1, 4], the wave resistance acting on an ACV is calculated by the formula

R =
∫∫
Ω

q
∂w

∂x
dx dy, (1.2)

where Ω is the region of load distribution q(x, y).

Institute of Machine Science and Metallurgy, Far East Division, Russian Academy of Sciences, Komsomol’sk-
on-Amur 681005. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 44, No. 2, pp. 49–55,
March–April, 2003. Original article submitted November 22, 2001; revision submitted July 9, 2002.

0021-8944/03/4402-0193 $25.00 c© 2003 Plenum Publishing Corporation 193



The linearized kinematic condition at the ice–boundary interface has the form [1]
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. (1.3)

2. We assume that the functions Φ(x, y, z), w(x, y), and q(x, y) satisfy the conditions necessary for their
representation in the form of Fourier integrals in the two variables x and y. Following [4–6], we write
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1
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(2.1)
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where F1 and E1 are the desired functions of the variables x1, y1, k, and θ.
Substitution of relation (2.1) into boundary conditions (1.1) using the kinematic condition (1.3) and depen-

dence (1.2), replacement of the variables k = λ and k cos θ = α, and simple transformations yield the following
formula for the wave resistance R of the system of surface pressures q(x, y) for steady motion over the ice plate:
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where
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By analogy with [6, 7], we consider a system of moving pressures q(x, y) described by the function of
hyperbolic tangent:

q(x, y) = (q0/4)[tanh (α1(x+ L/2))− tanh (α1(x− L/2))]

× [tanh (α2(y + L/(2ω)))− tanh (α2(y − L/(2ω)))], (2.3)

where q0 is the nominal pressure, L is the vehicle length, ω = L/B is the aspect ratio of the vehicle, B is the vehicle
width, and α1 and α2 are the parameters characterizing the degree of deviation of the pressure distributions in the
longitudinal and transverse directions from a rectangular form, respectively. The larger the values of α1 and α2, the
closer the pressure distribution to a rectangle form. As α1, α2 → ∞, the pressure q(x, y) tends to the pressure q0

uniformly distributed over the rectangle. Similarly to [6, 7], we use α1L = α2L = 10 in numerical calculations.
For the steady motion of the pressure system (2.3) over an ice viscoelastic plate, the dimensionless wave-

resistance coefficient A is calculated from the formula

R/D = Aq0/(ρ2gL), (2.4)
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where
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∞∫
0

λ2 tanh (λγ) dλ

λ∫
0

sin2 (α/2) sin2 (
√
λ2 − α2/(2ω))αη dα

sinh2 (πα/(2α1L))sinh2 (π
√
λ2 − α2/(2α2L))

√
λ2 − α2 (ξ2 + η2)

,

D = q0LB, kL = gL/u2, ω = L/B, γ = H/L,

ξ = α2(1 + εχλ tanh (λγ))− æχ3kLλ
5 tanh (λγ)− kLλ tanh (λγ),

η = ατ0
√
kL χ

3æλ5 tanh (λγ), ε = ρ1/ρ2, χ = h/L, τ0 = τϕ
√
g/L, æ = G/(3Lρ2g).

Here unlike in relation (2.2), the integration variables are in dimensionless form.
3. Numerical calculations by formula (2.4) were compared with previous theoretical results on the wave

resistance for the motion of a vehicle on pure water [7], broken ice [5, 6], and an ideal elastic plate [8]. In addition,
a comparison was performed of theoretical and experimental data on the deformation of an ice field during motion
of a body over an ice plate [9–13]. The results of the comparison are shown in Figs. 1–6.

The dashed curve 1 in Fig. 1 shows the results of [6, 7] obtained for the steady motion of an ACV on water for
ω = 2 and γ = 0.3. The dash-and-dot curve 2 is obtained for the motion of a load distributed under law (2.3) over
an ideal elastic plate for ω = 2, γ = 0.3, ε = 0.9, χ = 0.01, and E/(12(1− ν2)Lρ2g) = 2386, where E = 5 · 109 Pa,
ν = 1/3, L = 20 m, and ρ2 = 1000 kg/m3. The integral formula for calculating curve 1 is omitted because similar
results were obtained in [8], and this curve is given here for comparison. The solid curves (3–6) correspond to
calculations by formula (2.4) for dimensionless relaxation times τ0 = 0.07, 0.7, 3.5, and 7.0 for ω = 2, γ = 0.3,
ε = 0.9, χ = 0.01, and æ = 3401.4. An analysis of the behavior of curve 2 shows that the model of an ideal
elastic ice in the subcritical velocity region corresponds to zero wave resistance. This conclusion does not agree
with the known experimental data [12]. Curve 3 obtained for the model of viscoelastic ice for a short relaxation
time τ0 = 0.07 is close to curve 2, but in the region of small velocities, this model yields nonzero wave resistances.
With increase in τ0, the maximum value of the coefficient A becomes smaller, which is supported by the results
of [10, 11]. Studies of the motion of a plane pressure front on viscoelastic ice [10, 11] show that an increase in
viscosity leads to a decrease in the maximum amplitude of the vertical displacement of ice. Kozin [12] established
that the Kelvin–Voigt model gives the best fit to experimental data for strain relaxation times τϕ = 5–10 sec (for
L = 20 m and τ0 = 3.5–7.0). At the same time, using experimental data, Takizava [13] suggested that the relaxation
time ranges from 0.2 to 0.8 sec.

Figure 2 shows curves of the wave-resistance coefficient A versus the parameter kL for various ice depths.
Curves 1–4 are plotted for χ = 0.005, 0.010, 0.015, and 0.025, respectively, and ω = 2, γ = 0.3, ε = 0.9, æ = 3401.4,
and τ0 = 7. It can be seen that with increase in ice thickness, the wave resistance decreases. For χ = 0.025 (which
corresponds to an ice thickness h = 0.5 m and a vehicle length L = 20 m), the curve of the wave resistance versus
the parameter kL does not show a “hump” typical of an ACV.
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Figure 3 shows the wave-resistance coefficient A versus the parameter kL for various aspect ratios of ACVs
for χ = 0.01, γ = 0.3, ε = 0.9, æ = 3401.4, and τ0 = 7. Curves 1–3 correspond to ω = 1, 2, and 3, respectively. As
the aspect ratio of the vehicle increases, the wave-resistance coefficient decreases, as in the case of pure water and
broken ice [5–7], which is supported by theoretical studies of the deformation of an ideal elastic ice surface under
the motion of a rectangular load over this surface [9].

Figure 4 shows curves of the wave-resistance coefficient A versus the parameter kL for various values of the
parameter æ, which depends on the ratio of the shear elastic modulus of ice G to the vehicle length L. Curves 1–3
correspond to æ = 3401.4, 6802.8, and 13,605.6 for ω = 2, χ = 0.01, γ = 0.3, ε = 0.9, and τ0 = 7. From Fig. 4 it
follows that if the vehicle length L and the dimensionless parameters ω, χ, γ, ε, and τ0 are constant, an increase in
the elastic modulus of ice leads to a decrease in the wave resistance of ice.

Figure 5 shows curves of the wave-resistance coefficient of the ACV versus the parameter kL for various
relative depths of the water basin. Curves 1–3 are plotted for γ = 1.0, 0.5, and 0.3 and ω = 2, χ = 0.01, ε = 0.9,
τ0 = 7, and æ = 3401.4. An increase in the relative depth of the basin leads to a decrease in the absolute maximum
of the wave resistance and the displacement of the maximum point to the high-velocity region.

Figure 6 shows curves of the parameter k∗L for the maximum wave resistance versus the relative depth γ.
The dashed curve 1 is plotted for calculations by formula (2.8) in [6] for the steady motion of an ACV on pure
water for ω = 2. The solid curves 2–6 are plotted by formula (2.4) of the present paper with ε = 0.9 and ω = 2.
The same curves describe the dependence k∗L(γ) for ω = 1–3. Curves 2 and 3 refer to τ0 = 3.5 and 7, respectively,
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for χ = 0.005 and æ = 3401.4, curves 4 and 5 refer to æ = 3401.4 and 13,605.6, respectively, for χ = 0.01 and
τ0 = 7, and curve 6 refers to τ0 = 7, χ = 0.025, and æ = 3401.4. In addition, curve 5 refers to the parameters
æ = 3401.4, χ = 0.015, and τ0 = 7. An analysis of the behavior of the curves shows that for small relative depths
of the water basin (γ 6 0.4), the effect of the parameters ω, χ, τ0, and æ on the maximum wave resistance point
k∗L is insignificant. For great depths (γ > 0.4), an increase in the parameters χ, τ0, and æ leads to displacement of
the point k∗L to the high-velocity region; the greater the basin depth, the stronger the effect of the parameters χ,
τ0, and æ. The conclusion on the effect of the parameters χ = h/L and æ = G/(3Lρ2g) on the critical velocity
(corresponding to the maximum wave resistance) is supported by the results of [11]. The studies of [10, 11] show
that a variation in viscosity leads to an insignificant displacement of the point of maximum amplitude w(x, y) to
the low-velocity region. This conclusion disagrees with the results of our experiments, which is obviously explained
by the fact that ice was simulated by different models of viscoelastic bodies. In [10, 11], Maxwell’s model is used,
whereas we consider the Kelvin–Voigt model [3]. In addition, if we convert from the dimensionless variable k∗L to
the vehicle speed u, the quantity u∗, which corresponds to the maximum wave resistance, obeys the law u∗ =

√
gH

for small reservoir depths (γ 6 0.4). For great depths (γ > 0.4), the value of u∗ lies within the range of (umin, û),
where û =

√
gH, umin = 2(Dg3/(27ρ2))1/8 [2], and D = Eh3/(12(1− ν2)). For small relaxation times τϕ, the

quantity u∗ is close to umin. This result also agrees with the conclusions of [11, Chapter 7]. In the range ω = 1–3,
the aspect ratio of the vehicle has no effect on the value of k∗L.

In the theoretical studies described above, we established the dependence of the wave resistance of ACVs
during motion over ice fields versus the main characteristics of the vehicles and the ice situation. Compared with the
results of [8], the solution proposed in the present paper more completely describes the physical processes underlying
the occurrence of the wave resistance of ACVs during steady-state motion over ice fields.

The results obtained can be used to estimate the ice-breaking properties of various ACVs for breaking ice
by a resonance method [12].
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